LOGISTIC AND RATIO MODELS FOR LIVESTOCK ESTIMATION

JOSE S. GUTIERREZ1

The series of values assumed by a variable at different points of time are not generally of the regular functional type in which the values can be represented exactly by a mathematical function of time. There is, however, good reason to believe that true trend of series connected with population is a logistic. Since in practice a large number of economic time series are more or less closely connected with population, it is likely that this type of economic series will approximately follow the path of human population growth or the modifications of this path.

Logistic model of population growth

Rhodes (7) has defined the rate of increase of a population in a unit of time as the ratio of the increase, in the unit of time, of the population to the population at the beginning of this time interval. For example, if a population of size P at a time t increases by an amount $d P$ at a corresponding time interval dt , the rate of increase is given by the following equa tion

$$
\begin{equation*}
\mathrm{R}=\frac{1}{\mathrm{P}} \frac{\mathrm{dP}}{\mathrm{dt}} \tag{1}
\end{equation*}
$$

which could be written as

$$
\begin{equation*}
\log P=\int R d t+C \tag{2}
\end{equation*}
$$

[^0]where C is the constant of integration: This equation gives the mathematical relation of population P and time t. The solution gives the mathematical relation of population P and time t. The solution however; of this equation depends upon the form of R. It is evident that there is no limit to the number of growth equations which may be derived from equation (2) by giving R different forms. The simplest case of these equations occurs when R is considered a constant. The growth equation will be of an exponential form
\[

$$
\begin{equation*}
\mathbf{P}=\mathrm{A} \mathrm{e}^{\mathrm{at}} . \tag{3}
\end{equation*}
$$

\]

where A is a constant of integration. Theoretically, this might be a good growth model; however, this equation must bè ruled out when studying long run tendencies. As Malthus has pointed out, considering the rate of increase as a constant is an absurdity (3).

A more appropriate assumption as regards R is to consider it as decreasing gradually as time t and population P, increase. The form which R could take even under this asssumption will vary. "It might be computationally practical to assume that the form in which R changes is a linear function of P, that is, R is equal to $a(1 \cdots a P)$. In this case, the differential equation for P becomes

$$
\frac{1 d P}{p d t}=a(1-a P)
$$

which on integration yields,

$$
\begin{equation*}
P=\frac{\frac{1}{a}}{1+\frac{1}{A} e^{-a t}} \tag{5}
\end{equation*}
$$

where A is a constant of integration. By setting $k=1 / a$ and $b=1 / a A$ equation (5) becomes

$$
\begin{equation*}
P=\frac{k}{1+b e^{-a t}} \tag{6}
\end{equation*}
$$

Equation (6) is generally called the logistic curve of population growth.

Estimation of the parameters of the logistic curve

The difficulties to estimate the logistic fit from results of the logistic model of population growth are well-known. the application of the least square method or the maximumlikehood method yields normal equations with parameters entering in non-linear tashion and therefore connot be solved directly. Hotelling (3) had presented a very interesting method for the estimation of these parameters. He proposed the use of the differential equations and justify their use by a broad assumption. He said that in any problem the fundamental working assumption of the differential method is, not that a differential holds al all times and everywhere, but that the most probable value of the derivative at any instant is that assigned by the differential equation.

Tintner (9) considers the logistic as a law of population development and therefore the population density is proportional to the population. Then a simple transformation could be used:

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{t}}=\frac{1}{\mathrm{~K}_{\mathrm{t}}}=\frac{1+\mathrm{b} \mathrm{e}^{-\mathrm{at}}}{\mathrm{~K}} \tag{7}
\end{equation*}
$$

Consider the value of Z in a period $\mathrm{t}+1$, then

$$
\mathrm{z}_{\mathrm{t}+1}=\frac{1+\mathrm{b}^{-\mathrm{a}(\mathrm{t}+1)}}{\mathrm{k}}
$$

$$
\begin{equation*}
=\frac{1+\mathrm{b} \mathrm{e}^{-\mathrm{at}} \mathrm{e}^{-\mathrm{al}}}{\mathrm{k}} \tag{8}
\end{equation*}
$$

From equation (7) the value of $b e^{-a t}$ is $k Z_{t}-1$ and substituting in equation (8)

$$
\begin{align*}
Z_{t+1} & =\frac{1-e^{-a 1}+k e^{-a 1} Z_{t}}{k} \\
& =\frac{1-e^{-a 1}}{k}+e^{-a 1} Z_{t} \tag{9}
\end{align*}
$$

Since the unit used is a one year period $1=1$ then

$$
\begin{equation*}
Z_{t+1}=\frac{1-e^{-a}}{k}+e^{-a} Z_{t} \tag{10}
\end{equation*}
$$

which is a simple linear difference equation with constant coefficients.

The simplicity and linearity of this model equation (10) could be readily seen if A is put for $\frac{1-e^{-a}}{k}$ and $B=e^{-a}$, then the difference equation could be written as

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{t}+1}=\mathbf{A}+\mathbf{B} \mathbf{Z}_{\mathrm{t}} \tag{11}
\end{equation*}
$$

The estimates A and B are obtained by least square method. The variances and covariances, $\mathrm{S}^{2}, \mathrm{~S}^{2}, \mathrm{~S}^{2}, \mathrm{~S}_{\mathrm{B}}$ are likewise estimated. The approximate variances of the estimates a, b, and k were obtained by the method of statistical differential.

Application of the logistic model to livestock estimation

The feasibility of using the logistic model in livestock estimation in the Philippines has been examined in this study. The logistic models have been fitted to different livestock population for 1950-1964. The results of this fitting are as - " $\mathfrak{r w s}$:

Carabao

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+{ }^{1}}= & 2.8768 \times 10^{-7}+.9160 \mathrm{Z}_{\mathrm{t}} \tag{12}\\
& \left(9.639 \times 10^{-8}\right)(.2900)\left(2.30 \times 10^{-14}\right) \\
\mathrm{s}^{2} . \quad \mathrm{s}_{\mathrm{B}}^{2} & \mathrm{~s}^{2}
\end{align*}
$$

Cattle

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 9.71 \times 10^{-7}+.9160 \mathrm{Z}_{\mathrm{t}} \tag{13}\\
& \left(4.291 \times 10^{-7}\right)(.3725)\left(1.90 \times 10^{-12}\right)
\end{align*}
$$

Horses

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 2.9997 \times 10^{-6}+.35087 \mathrm{Z}_{\mathrm{t}} \tag{14}\\
& \left(6.4319 \times 10^{-6}\right)(1.36842)\left(7.80 \times 10^{-13}\right)
\end{align*}
$$

Hogs

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & .5639 \times 10^{-8}+.6564 \mathrm{Z}_{\mathrm{t}} \tag{15}\\
& \left(2.967 \times 10^{-8}\right)(.15951)\left(2.60 \times 10^{-14}\right)
\end{align*}
$$

Goats

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 8.128 \times 10^{-9}+.58897 \mathrm{Z}_{\Sigma} \tag{16}\\
& \left(1.1630 \times 10^{-6}\right)(.54690)\left(1.131 \times 10^{-12}\right)
\end{align*}
$$

Sheep

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 4.9753 \times 10^{-5}-079487 \mathrm{Z}_{\mathrm{t}} \tag{17}\\
& \left(1.163 \times 10^{-6}\right)(.02107)\left(8.6475 \times 10^{-9}\right)
\end{align*}
$$

Chicken

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 4247 \times 10^{-0}+.76285 \mathrm{Z}_{\mathrm{t}} \tag{18}\\
& \left(3.47 \times 10^{-8}\right)(.01446)\left(8.8 \times 10^{-18}\right)
\end{align*}
$$

Ducks

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 1.497 \times 10^{-7}+.72353 \mathrm{Z}_{\mathrm{t}} \tag{19}\\
& \left(1.10 \times 10^{-8}\right)(.00152)\left(2.0 \times 10^{-14}\right)
\end{align*}
$$

Geese

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & 7.721 \times 10^{-7}+.48190 \mathrm{Z}_{\mathrm{t}} \tag{20}\\
& \left(8.824 \times 10^{-6}\right)(.48286)\left(1.0072 \times 10^{-9}\right)
\end{align*}
$$

Turkey

$$
\begin{align*}
\mathrm{Z}_{\mathrm{t}+1}= & -1.244 \times 10^{-6}+97037 \mathrm{Z}_{\mathrm{t}} \tag{21}\\
& \left(4.1211 \times 10^{-6}\right)(.14454)\left(1.786 \times 10^{-10}\right)
\end{align*}
$$

The quantities below each model are $s_{A}^{2} ; s_{B}^{2}$ and s^{2};respectively.

Using the above logistic models, the population of each type of livestock was estimated in 1951 to 1965. The results of the estimation are presented in table 1. Significant results were obtained on the difference between the official and logistic estimates of the population of carabao, ducks, and geese.

TABLE 1 ESTIMȦTES Ó LIVESTOCK POPUL̇ATION IN THE PHILIPPINES 1950-65

Year	Carabao		Cattle		Horses		
	Official	Logistic	Official	Logistic	Official	Logistic	
1950	1,902,920	-	698,060	-	206,140	-	
1951	2,342,540	2,020,200	715,450	718,030	206,600	212,680	
9152	2,439,070	2,471,150	738,990	737,190	213,580	212,860	
1953	2,510,110	2,569,370	762,290	763,360	219,330	215,400	
1954	2,980,590	2,635,190	763,350	789,140	197,200	217,200	
1955	3,279,110	1,108,200	805,860	790,260	207,710	209,250	
1956	3,594,680	3,403,210	861,160	837,800	218,420	213,270	
1957	3,584,130	3,719,130	883,040	900,330	219,220	217,100	
1958	3,596,390	3,714,570	896,270	25,240	220,900	217,380	
1959	3,773,000	3,726,620	933,200	940,380	227,300	217,960	
1960	3,696,300	3,899,850	1,110,500	982,800	217,400	220,960	
1961	3,452,000	3,824,680	1,054,700	1,190,760	197,300	216,750	
1962	3,471,800	3,584,230 .	1,094,400	1,124,450	210,000	209,290	
1963	3,323,100	3,603,860	1,197,900	1,171,650	220,200	214,110	
$.1964$	3,100,700	3,456,740	1,382,900	1,296,340	242,100	217;720	
1965		3,235,620		1,527,880		224,770	
${ }^{\text {d }}$	22,380						
d-	-42,390						
\|d		196,180					
d	5,983						
F	7.085			28			
P-Level	P<. 001					> 20	

TABLE 1 (Continuëd)
ESTIMATES OF LIVESTOCK POPULATION IN THE PHILIPPINES 1950-65

Year	H 0 gs		Goats		$\mathrm{Sh} e \mathrm{e} p$	
	Official	Logistic	Official	Logistic	Official	Logistic
1950	3,899,130	ー	355,430	\rightarrow	26,350	-
1951	4,158,630	4,449,780	376,960	404,900	21,150	21,400
1952	4,442,540	4,667,880	384,000	421,020	21,760	20,840
1953	4,793,620	4,898,600	391,600	426,170	20,710	21,690
1954	4,867,630	5,172,770	438,200	431,220	15,720	21,780
1955	5,289,390	5,229,310	458,760	436,650	16,440	22,370
1956	5,749,880	5,540,780	497,850	476,960	17,150	22,260
1957	6,026,150	5,863,730	530,220	501,050	17,920	22,160
1958	6,083,620	6,049,240	537,060	519,860	16,560	22,070
1959	6,573,900	6,087,170	565,700	523,730	16,800	22,240
1960	6,572,600	6,400,410	617,100	539,730	14,800	21,780
1961	6,191,400	6,400,000	532,300	565,870	20,100	22,530
1962	6,725,700	6,157,260	628.300	521,010	22,500	21,850
1963	6.233,700	6,494,350	483,500	571,400	13,600	21,640
1964	6,616,400	6,185,060	557,500	492,220	4,400	22,770
1965		6,427,150		535,000		20,860
${ }^{\text {sd }}$	286					
d						
[d]					:	
$\stackrel{s-}{\text { a }}$						
F						
P-level		. 40	. 40			P 30

TABLE 1 (Continued)
ESTIMATES OF LIVESTOCK POPULATION IN THE PHILIPPINES 1950-65

	$\underset{\text { Offcial }}{\underset{\text { C h }}{ }}$				G e Offcial Logistic		$\underset{\text { Official }}{\mathbf{u}} \underset{\text { Logistic }}{ }$	
1950	25,235,000	- -	709,260	-	27,000	-	25,000	-
1951	28,054,900	29,005,090	752,290	. 854,850	79,600	86,890	93,000	1,187,510
1952	32,089,580	31,808,640	1,046,600	899,770	25,000	39,110	24,020	26,620
1953	37,392,150	35,690,070	1,243,900	1,189,060	30,000	37,040	24,900	25,540
1954	39,804,870	40,572,890	1,379,380	1,367,430	25,450	42,050	24,900	26,510
1955	44,583,590	42,714,500	1,695,550	1,483,240	85,370	37,520	- 30,210	26,726
1956	49,775,770	46,823,060	2;142,910	1,734,910 :	91,360	74,820	$\because 33,540$	32,390
1957	51,838,700	51,093,400	2,077,780	2;052,120	95,980	76,950	37,010	36,120.
1958	52,408,780	52,737,050	2,108,740	2,008,440	102,040	78,490	41,250	40,040
1959	56,141,500	53,185,830	2,097,200	2;029,220	97,969	82,350	41,430.	44,880
1960	52,335,100	56,069,530	2,230,700	2,021,430	97,200	79,110	40,600	45,090
1961	49,984,400	53,126,490	1,784,100	2,109,700	97,200	78,870	38,200	44,140
1962	51,353,600	51,261,020	1;934,100	1,801,150	77,800	78,870	$\because 40,400$	41,390
1963	48,624,000	52,353,280	1;594,300	1,909,130	84,500	71,870	72,900	43,910
1964	51,648,200	50,163,030	1,602,300	i, 657,000	127,200	74,490	- 100,400	82,880
1965		52,584,530		1;663,060		72,600		1,088,260 ${ }^{\circ}$
${ }^{3} \mathbf{d}$		2,170,484	19,240		19,588		281,683.	
d		+69,050	40,890		13,440		-75,790	
[d]		1,766,870	154,840		19,320		83,390	
d		680,340	-5,134		5,237		75,316	
F		0.118	7.964		2.566		1.006	
		P > . 50	P < . 001		. $02>\mathrm{P}>.05$		$.40>\mathrm{P}>.30^{\circ}$	

Ratio estimation of livestock population

Suppose a variable reacts to the movements of another variable i.e. following the same type of probability distribution functions. The representation of such similarity in movements may be exploited in studying the movement of one based on the known movement of the other. A possible representation of such similarity in movements is

$$
\begin{equation*}
Z_{t+1}^{\prime}={\frac{Z_{t}}{\prime}}_{Z_{t}}^{\prime} Z_{t+1} \tag{22}
\end{equation*}
$$

where the primes indicate the variable whose movement is being studied based on the known movement of the other variable. A more general representation of such similarity is

$$
\begin{equation*}
Z_{t+1}^{\prime}=\frac{f\left(Z_{t}^{\prime}\right)}{g\left(Z_{t}^{\prime}\right)} h\left(Z_{t+1}\right) \tag{23}
\end{equation*}
$$

where f, g, and h denote functions of Z_{t}^{\prime}, Z_{t} and Z_{t+1} respectively.

It can b_{e} readily seen that equation (23) can be as simple as equation (22) or can be highly complicated depending upon the form assigned to f, g, and h.

Consider the simple relation given by equation (22). The unbiasedness of \hat{Z}_{t+1}^{\prime} as an estimator of Z_{t+1}^{\prime} depends on the assumption made on Z_{t+1}^{\prime} / Z_{t} : If the simple lagged relation exists between Z_{t+1}^{\prime} and Z_{t}^{\prime}, this can be formulated as follows:

$$
\begin{equation*}
z_{t+1}^{\prime}=w^{\prime} Z_{t}^{\prime} \tag{24}
\end{equation*}
$$

where w^{\prime} is estimated by $\frac{Z_{t+1}}{Z_{t}}$. If the expectation $E\left(\frac{Z_{t+1}}{Z_{t}}\right)=w^{\prime}$ then

$$
\begin{equation*}
\hat{Z}_{t+1}^{\prime}=w^{\prime} \hat{Z}_{t} \tag{25}
\end{equation*}
$$

is an unbiased estimator of Z_{t+1}^{\prime}. This unbiasedness of \hat{Z}_{t+1} further assumes that Z_{t}^{\prime} and w^{\prime} are independent.

The assumption $E\left(\frac{Z_{t+1}}{Z_{t}}\right)=w^{\prime}$ implies that the rates of increase for the pairs of livestock considered are the same. For pairs such as carabao and cattle; sheep goats, and ducks and geese, this assumption is realistic, on account of the similarity in gestation or incubation periods of the pairs compared. It may however not be realistic for such pairs as carabao and hogs, cattle and sheep, and carabao and chicken due to the difference in gestation and incubation periods. Shorter gestation and incubation periods mean faster rates of increase.

With the latter comparison \hat{Z}_{t+1}^{\prime} may be unbiased estimator of Z_{t+1}^{\prime} if function of Z_{i+1} / Z_{i} can be formulated such that

$$
\begin{equation*}
E\left[f\left(\frac{Z_{t+1}}{Z_{t}}\right)\right]=w^{\prime} \tag{26}
\end{equation*}
$$

It may be noted that equations (24) and (25) are special forms of equation (11); equations (24) and (25) are really equation (11) with A equal to zero. The regression coefficient B is estimated by w^{\prime} through the utilization of the known movements of a similarly distributed variable.

In this paper, carabao is set as the variable whose movement is known and other livestock including poultry as the variable whose movements are being studied given the carabao growth pattern.

The choice of carabao as the independent livestock is due to the pattern of Philippine agriculture. Philippine agriculture is basically one of rice. Farm surveys designed utilizing palay farm characteristics may yield unbiased estimators of farms carabao population but may result to biased estimates of the population of the livestocks (including poultry). The high degree of correlation between farm reporting rice production and farm reporting carabao might explain the unbiased etimator of carabao population. On the other hand, the relatively low correlation or no correlation at all between farms reporting other livestock might be the reason for the biased estimators of the population of this livestock. The relatively high correlation between farms reporting carabao and farms reporting livestock might suggest the feasibility of utilizing the principles of ratio estimation and similarly distributed variables to achieve an unbiased estimators with non-significant bias) of the population of these livestock. (This discussion is based on a preliminary correlation analysis done in the Bureau of Agricultural Economics).

$$
\begin{align*}
& \text { The variance of } Z_{t+1}^{\prime} \text { is } \\
& \begin{aligned}
\operatorname{Var}\left(Z_{t+1}^{\prime}\right)= & E\left(\frac{Z_{t+1}}{Z_{t}}\right) \text { Var } Z_{t}^{\prime}+\left(E Z_{t}^{\prime}\right)^{2} \operatorname{Var}\left(\frac{Z_{t}+1}{Z_{t}}\right) \\
& +2 E\left(\frac{Z_{t}+1}{Z_{t}}\right) E\left(Z_{t}^{\prime}\right) \operatorname{Cov}\left(\frac{Z_{t}+1}{Z_{t}}, Z_{t}^{\prime}\right)
\end{aligned}
\end{align*}
$$

where

$$
\begin{align*}
\operatorname{Var} \frac{Z_{t+1}}{Z_{t}}= & \frac{1}{\left(E Z_{t}\right)^{2}}\left[\operatorname{Var} Z_{t+1}+E\left(\frac{Z_{t}+1}{Z_{t}}\right)^{2} \operatorname{Var} Z_{t}\right. \\
& \left.\left.\left.-2 E\left(\frac{Z_{t+1}}{Z_{t}}\right) \operatorname{Cov}\right) Z_{t}, Z_{t+1}\right)\right] \tag{28}
\end{align*}
$$

The estimator of $\operatorname{Var}\left(Z_{t+1}^{\prime}\right)$ is

$$
\begin{align*}
\operatorname{Var}\left(Z_{t+1}^{\prime}\right)= & \left(\frac{\hat{Z}_{t}+1}{\hat{Z}_{t}}\right)^{2} \operatorname{Var} Z_{t}^{\prime}+\left(Z_{\cdot}^{\prime}\right)^{2} \operatorname{Var}\left(\frac{\hat{Z}_{t}+1}{\hat{Z}_{t}}\right) \\
& +2 \frac{Z_{\mathrm{t}}+1}{\hat{Z}_{\mathrm{t}}} \hat{Z}_{\mathrm{t}}^{\prime} \operatorname{Cov}\left(\frac{Z_{\mathrm{t}}+1}{\hat{Z}_{\mathrm{t}}}, \hat{\mathrm{~L}}_{\mathrm{t}}^{\prime}\right) \tag{29}
\end{align*}
$$

The values of $\mathrm{Z}_{\mathrm{t}}^{\prime} / \mathrm{Z}_{\mathrm{t}}$ by year and by type of livestock for 1950 to 1964 are presented in table 2. A good precision in the sense of closeness of one Z_{t}^{\prime} / Z_{t} to another may also be noted. This closeness of one $\mathrm{Z}_{\mathrm{t}}^{\prime} / \mathrm{Z}_{\mathrm{t}}$ to another justify the formulation of the $_{e}$ equation (22). The estimated population values of different livestock using equations (22) and (24) are refered to as ratio estimates (table 3).

It can also be seen in the same table that the differences between the official estimates and ratio estimates of the population of different types of livestock do not differ significantly. There is however a tendency for the ratio estimates of the population of horses and sheeps to exceed those of the official estimmates. The ratio estimates of population number of other livestock are smaller than their corresponding official estimates. The absolute mean differences are presented in the aforementioned table.

TABLE 2

VALUES OF Z_{t}^{\prime} / Z_{t} BY YEAR AND BY TYPE OF LIVESTOCK

 1950-1964| Year | Cattle | Horses | Hogs | Goats | Sheep | Chicken | Ducks | Geese | Turkey |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1950 | . 3668 | . 1083 | 2.0490 | . 1868 | . 0138 | 13.2610 | . 3727 | . 0142 | . 0131 |
| 1951 | . 3054 | . 0882 | 1.7753 | . 1609 | . 0090 | 11.9766 | . 3212 | . 0043 | . 0043 |
| 1952 | . 3020 | . 0876 | 1.8214 | . 1574 | . 0089 | 13.1564 | . 4291 | . 0123 | . 0102 |
| 1953 | . 3044 | . 0876 | 1.9145 | . 1562 | . 0083 | 14.9337 | . 4968 | . 0102 | . 0099 |
| 1954 | . 2567 | . 0663 | 1.6371 | . 1474 | . 0053 | 13.3875 | . 4638 | . 0287 | . 0102 |
| 1955 | . 2465 | . 0635 | 1.6179 | . 1403 | . 0050 | 13.6372 | . 5186 | . 0279 | . 0103 |
| 1956 | . 2400 | . 0609 | 1.6021 | . 1387 | . 0048 | 13.8695 | . 5971 | . 0267 | . 0103 |
| 1957 | . 2464 | . 0612 | 1.6813 | .1479 | . 0050 | 14.4630 | . 5797 | . 0285 | . 0115 |
| 1958 | . 2492 | . 0614 | 1.6916 | .1493 | . 0046 | 14.5723 | . 5863 | . 0272 | . 0115 |
| 1959 | . 2473 | . 0602 | 1.7421 | . 1499 | . 0045 | 14.8797 | . 5558 | . 0258 | . 0108 |
| 1960 | .3004 | . 0588 | 1.5491 | .1669 | . 0040 | 14.1587 | .6035 | . 0263 | . 0103 |
| 1961 | . 3055 | .. 0572 | 1:7935 | : 1542 | . 0058 | 14.4795 | . 5168 | . 0225 | . 0211 |
| 1962 | . 3152 | . 0634 | 1.7955 | .1393 | . 0039 | 14.4791 | . 5571 | . 0243 | . 0210 |
| 1963 | . 3603 | $\cdot .0663$ | 1.8758 | . 1455 | . 0041 | 14.6319 | .4798 | . 0383 | . 13302 |
| 1964* | . 4460 | . 0781 | 2.1338 | . 1798 | . 0014 | 16.6565 | . 5167 | . 0257 | . 0300 |

TABLE 3 .

RATIO ESTIMATES OF LIVESTOCK POPUULATION IN THE PHILIPPINES 1951-1964

An interesting result of the ratio estimation livestock population number is the ratio estimates for poultry and smaller four-footed livestock e.g., sheep, goats, and hogs. As mentioned earlier the difference in gestation and incubation periods may result to difference in rates of increase between that of carabaos and those of other livestock. The results of this estimation seemed not to support this contention. The principal reason for this rather interesting result is the assumption that livestock number for period $t+1$ is a function of the number for period t. This justify the lag. ged relation given by equation (24).

Estimation of livestock population using ratio estimator with an inflator-deflator multiplier

To improve the ratio estimation of a livestock number based on the known increase of another livestock, and infla-tor-deflator factor is introduced into the estimator. For this study a simple ratio of prices (values) of the livestock are used. In estimating the livestock number for period $t+1$ the inflator-deflator factor used is the ratio of values for periods t and $t-1\left(P_{t} / P_{t-1}\right)$ (see table 4). For smaller livestock (chicken and hogs) this ratio might reflect the price response of .the animal husbandmen. However, for larger livestock (e.g., carabao and cattle) these periods used might be too short to give ample time for adjustment in the animal production plans.

TABLE 4

VALUES OF INDEF FACTOR ($\mathrm{P}_{\mathrm{t}}^{\prime} / \mathrm{P}_{\mathrm{t}-\mathrm{-}}^{\prime}$) BY YEAR AND BY TYPE OF LIVESTOCK 1952 - 1965

Year	Cattle	Horses	Hogs	Goats	Sheep	Chicken	. Ducks	Geese	Turkey

The differences between the official estimates of livestock number and those obtained using ratio estimator with "indif" (inflator-deflator) factor are not statistically significant (table 5). Larger livestock number are obtained for cattle, horses, and sheeps and the rest of the estimates are all smaller than the corresponding official estimates.

The average differences and the average absolute differences are generally larger than thos s_{e} corresponding values obtained using simple ratio estimators.

The results of this aspect of the study seem to strengthen the assumption on expressing the livestock number for a period as a function of the number for the preceeding period. For short period projections this assumption may hold, however, for long period projections there may still be a need to use more sophisticated indef models say, regression models.

Comparison of the different estimators

The values of the standard error of differences, standard error of mean differences, mean, differences and mean absolute mean difterences and estimated F-values, and the corresponding probability levels are given in table 6 :

Two significant differences were obtained for comparison, official (0) and logistic (L) and one each for comparison ratio (R) and ratio with indef factor (RI) and logistic and ratio with indef factor.

TABLE 5

ESTIMATES OF LIVESTOCK POPULATION IN THE PHILIPPINES 1952-1964 USING RATIO ESTIMATOR WITH AN INFLATOR-DEFLATOR MULTIPLIER

| | | Cattle | Horses | Hogs | Goats | Sheep | Chicken | Ducks | Geese |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Turkey

The writer has some reservation as regard the report ${ }^{}$ d value of hogs particularly those for fiscal year 1954 to 1961.

TABLE 6

VALUES OF ${ }^{\text {s }} \mathrm{d}, \mathrm{s} \mathrm{d}, \overline{\mathrm{d}}, \overline{\mathrm{d}} \mid, \mathrm{F}$, AND P—LEVEL FOR VARIOUS ESTIMATORS OF LIVESTOCK NUMBERS

CAttle	$0-\mathrm{L}$
sd	57,732
a ${ }^{\text {s }} \mathrm{d}$	15,435
$\checkmark \bar{d}$	2,360
\| $\overline{\mathrm{d}}$]	37.950
F	0.1528

$\mathrm{O}-\mathrm{R}$	$\mathrm{O}-\mathrm{RI}$
82,867	152,676
22,156	42,291
7,790	$-41,000$
58 Enn	121.050
0.3516	0.9695

$\mathrm{L}-\mathrm{R}$
74,417
19,896
-960
54,490
0.0482

L-RI	R-RI
138,057	129,112
38,241	35,764
$-7,490$	$-22,060$
112,550	83,160
0.1958	0.6168

HORSES

sd	10,183	22,742	38,223	16,012	31,326	28,824
d	2,722	6,080	10,587	4,281	8,677	7,984
d	3,240	-7,960	$-8,780$	-7,200	-7,580	-11,380
$\|\bar{d}\|$	7,610	14,790	22,560	12,430	21,640	16,360
F	1.190	1.3092	0.8293	1. 6818	0.8736	1.4253

VALUES OF ${ }^{s} \mathrm{~d},{ }^{\mathrm{s}} \mathrm{d}, \mathrm{d}, \mid \overline{\mathrm{d}} \mathrm{i}, \mathrm{F}$, AND P -LEVEL FOR VARIOUS ESTIMATORS .. (CONT.)

HOGS	O-L	$\mathrm{O}-\mathrm{R}$	$\mathrm{O}-\mathrm{RI}$	$\mathrm{L}-\mathrm{R}$	$\mathrm{L}-\mathrm{RI}$	R-R I
sd	286,932	443,396	810,123	386,005	841,169	501,957
${ }_{\text {d }}$	76,719	118,550	216,602	106,923	233,003	139,042
a C	59,200	112,551	115,430	133,930	1,778	300,467
\| \mid \|	251,469	344,655	492,930	303,504	481,067	367,646
F	0.7716	0.9493	0.5329	1.2525	0.0076	2.1609
GOATS						
sd	50,665	40,620	38,157	40,124	39,458	17,421
${ }^{\text {s }}$ -	13,546	10,860	10,202	10,727	10,929	4,825
d	11,930	13,470	18,128	-1,348	-1,457	-2,070
$\overline{\text { ¢ }} \overline{\text {] }}$	43,580	33,310	31,276	31,797	28,383	12,910
F	0.8800	1.2403	1.7769	0.1256	0.1333	0.4290

SHEEP	O-L	O-R		O-RI			
${ }^{8} \mathrm{~d}$	18,215	4,500		4,762	53,113	32,863	2044
d	4,870	1,203		1,319	14,200	9,102	568
d	-5,170	-1,860		-1,070	-2,990	4,180	700
$\|\mathrm{d}\|$	5,390	3,280		3;510			
F	1.0616	1.5461		0.8112	0.2105	0.4591	1.2323
8							
CHICKENS							
${ }^{\text {sd }}$	2,170,484	2,754,796		3,650,671	2,633,818	5,218,834	3,903,255
d	580,340	73,612		1,014,075	,702,351	1,445,660	1,084,238
\bar{d}	69,050	783,420		864,080	824,090	987,780	-211,110
$\overline{\mathrm{d}} \mid$	1,766,890	2,266,370		2,853,490	2,420,440	4,326,940	3,010,700
F	0.1180	1.0664	.-	0.8520	1.1733	0.6832	0.1947

TABLE 6

The lack of information on the variances of the official estimates make it impossible to compare the variances of the different estimators against those of the official.

Summary and conclusion

The feasibility of estimating (projection) the population number of a given livestock for a certain period based on information available for another livestock has been demonstrated in this study. Lagged relationships have been utilized in ratio projection of livestock numbers. The use of inflator-deflator factors have also been investigated. The lack of the estimated variances for the general estimates of livestock number prevented the stuudy from making investigations on the relative efficiency of the different estimators considered. However, differences between estimates when treated statistically seemed to favor the feasibility of projecting a livestock number using a livestock number using the known number of another livestock.

Literature Cited

1. Davies, George R. The growth curve. Journal of American Statistical Association. Vol. 22, 1927. pp. 370-374.
2. Gutierrez, Jose S. Logistic growth models for trend analysis. Unpublshed research.
3. Hotelling. Harold. Differential equations subject to error and population estimates. Journal of American Statistical Association. Vol. 22, 1927. pp. 283-314.
4. Kendall, Maurice. The advance theory of statistics. Hafner Publishing Co., New York. pp. 363-371.
5. Maneses, Edmundo. A mordel of growth for the United States, 136.2 195s. Unpublished thesis, Iowa State University, 1959. pp. 1-85.
6. Pearl, R. and Reed, L.S. On the mathematical theory of population growth. Metron. Vol. 31923 (as cited in Hotel. ling).
7. Rhodes, E.C. Population mathematics III. Journal of the Royal Statistical Society. Vol. 103. 1940. pp 362-387
8. Tintner Gerhard. Econometrics. John Wiley and Sons, New York, 1995. pp 189-211.
9. Tintner Gerhard. Handbuch der Okonometue. Springer. Verlag, Berlin. 1960. pp. 273-276.

[^0]: 1 Assistant Professor of Statistics and Economics, U. P. Statistical Center

